Where the Grass Grows Greener

The researchers will utilize a drone, equip with various sensors, in hopes of identifying the optimum sensor to detect drought stress on turfgrass. Golf courses in the Lubbock area provide economic benefit to the region according to the projects lead researcher, Joey Young Ph. D.

A situation is playing out in the Texas Panhandle and local golf courses are feeling the heat. During the end of 2017 and into early 2018, the region has gone through an extreme drought, and the main source of groundwater has been in rapid decline for over a decade. Two Texas Tech University faculty members are gearing up to tackle the water issue.

Although an afternoon on the golf course sounds like a fun way to spend the day, for Joey Young, Ph.D. and Wenxuan Guo, Ph.D., two assistant professors in the Department of Plant and Soil Science, it is an opportunity to solve overwatering of recreational turfgrass.

With the region in an extreme drought and the Ogallala Aquifer at risk of total depletion, golf courses like the Rawls Course at Texas Tech are under pressure, said course superintendent, Rodnie Bermea.

“Golf courses use a lot of water,” Bermea said. “In times of drought, it’s especially hard to water all areas of the properly and efficiently. We can end up using more water than we need to, which costs us money and hurts our water supply.”

According to the Alliance for Water Efficiency, turf requires an average of 25 to 60 inches of water annually, depending on climate, to maintain a healthy appearance. This is one reason some argue golf courses are wasteful. However, Young, an assistant professor of turfgrass science, sees it differently.

It’s more than a tee time

“There’s definitely a perception that golf courses and turfgrass are something that’s basically a waste of a lot of water, and therefore unnecessary,” Young said. “But that’s just not the case. Courses provide a big economic benefit for cities like Lubbock.”

turfgrass.story_SN-4
[Left to Right] Joey Young Ph. D., and Wenxuan Guo Ph. D., discuss plans for their turfgrass research at the Rawls Golf Course as the drone waits, ready for takeoff.
Young argues tournaments and other events hosted at courses like the Rawls impact the local economy by bringing people into the city who utilize local businesses. A sentiment echoed by Bermea.

“Tournaments aren’t only beneficial to the Rawls course, ” Bermea said. “They help everyone. There are the obvious businesses that benefit directly from visitors to the golf course, like hotels, restaurants and all that. But there’s a trickle-down effect on the economy that just can’t be understated.”

While it is apparent golf courses use a lot of water, Young and Guo have devised a plan that could help not only the drought-stricken Lubbock area, but could impact courses around the country and the world.

“Water is our No. 1 limiting resource,” said Guo, an assistant professor of crop ecophysiology and precision agriculture. “Everyone knows the Ogallala Aquifer is depleting at a rapid rate. So, we need to figure out how to save the water or use the water more wisely, more efficiently. This is important from both an economic and social perspective.”

Driving with the drone

Guo said it is not only important to save water for the next generation, but also to conserve water for conventional agriculture production. With a grant provided by the United States Golf Association, the two researchers have developed an experiment with the potential to allow more accurate water allocation on golf courses.

Courses provide a big economic benefit for cities like Lubbock.

“Our goal is to utilize drones and different sensors that will be attached to the drones to collect imagery that could basically determine areas of drought stress on a golf course,” Young said. “The overall purpose would be to utilize various sensors that may give us different information.”

Once these optimal sensors are identified, they could be utilized by golf courses to identify drought stress, potentially before it is even visible to the human eye, Young said. This technology would be used by course managers to adjust irrigation from areas that stay wetter to areas that tend to dry out more. This will ultimately help lower water usage on the golf course and achieve more balanced playing conditions.

“If this technology could allow us to see an area that’s dryer or an area that’s wetter we would be able to water those areas more efficiently,” Bermea said. “We could create a more sustainable irrigation program that would be environmentally beneficial and save us money.”

Simply lowering the golf courses irrigation by 10 to 15 percent would be a huge financial saving for the Rawls, Bermea said.

The research is being conducted at the Rawls Golf Course as well as the Amarillo Country Club, which use different kinds of turfgrass. The varying sensors will give a broader picture of how cool season and warm season turfgrasses handle drought stress.

Young says ultimately he hopes to identify sensors to address specific issues on golf courses and would then like to share that information with course managers around the country. But, it is not just golf courses that may be reaping the benefit of his research.

A put for all mankind

In tandem with the research being conducted on Lubbock and Amarillo golf courses, Guo will also be utilizing the drone and sensor technology to look at lowering water usage in conventional agriculture.

“My area of research is in crop ecophysiology and precision agriculture,” Guo said. “I will be using drones to identify the crop growth variability in fields, within the same season. So, before the final yield at the end of the season, we can look at how the plants are growing and adjust irrigation and other imputes to minimize resource use.”

He said even though different plants sometimes require different methods to study, all plants show drought stress in the same way.

Just like the work being done on the courses, Guo hopes to utilize drone imagery to identify areas of drought stress in crops like corn, cotton and sorghum.

“It has become increasingly important to conserve our water,” Guo said. “The water in our area has been diminishing much faster than originally expected, and we don’t know what our water supply will look like in 20 years. Our whole economy is driven by an adequate water supply, so that makes it urgent.”

This joint research endeavor to ultimately lower water usage in West Texas could have a lasting impact on the region, through improving sustainability and protecting the economic stability of golf courses and conventional agriculture practices. But Young hopes their research will have an even greater impact.

“It’s important to us that we are doing what’s right for our region,” Young said. “But bigger than that I want to communicate our findings to the scientific community in hopes that the information can be shared with course superintendents around the world. For my research to have that kind of reach and impact communities around the world would be the ultimate reward.”